报告题目:Symmetry-breaking bifurcations of a free boundary problem modeling tumor growth with angiogenesis by Stokes equation
报告人:王泽佳教授 江西师范大学
报告时间:12月29日,10点30分
报告地点:腾讯会议ID: 398 320 887
报告人简介:
王泽佳,江西师范大学bat365官方网站教授、博士生导师。主要从事偏微分方程解的定性理论研究,已在Calc. Var. Partial Differential Equations,Discrete Contin. Dyn. Syst. Ser. B, Proc. Roy. Soc. Edinburgh Sect. A,Nonlinearity等期刊发表及接收发表学术论文60篇。先后主持国家自然科学基金项目4项,省部级科研项目2项,出版“十一五”国家级规划教材1部,曾应邀到新加坡国立大学、美国圣母大学、加拿大麦吉尔大学等地进行学术访问。
报告摘要:
In this talk, we consider bifurcation solutions of a free boundary problem modeling tumor growth with angiogenesis by Stokes equation. We first establish the existence and uniqueness of radially symmetric stationary solutions, then prove that there exist a positive integer $n^{**}$ and a sequence $(/mu//gamma)_n$ such that a branch of symmetry-breaking stationary solutions bifurcate from the radially symmetric one for every $(/mu//gamma)_n$ (even $n/ge n^{**}$), where $/mu$ and $/gamma$ denote the proliferation rate and the cell-to-cell adhesiveness, respectively. We also give the impact of angiogenesis in tumor model.