报告时间:2022年4月22日 9:30-11:30
报告地点: 腾讯会议:946-846-960
报告一题目:Liouville type results for semilinear biharmonic problems in exterior domains
报告人: 刘忠原
报告简介:
In this talk, we consider the Liouville type theorems for semilinear biharmonic problems in exterior domains. The interesting features in our proof are that neither asymptotic behavior of solutions at infinity nor symmetric property of solutions are required. To obtain the results, we also need to study some properties of singular solutions for the critical biharmonic equation, which is interesting itself.
报告人简介:
刘忠原,河南大学副教授, 研究方向是非线性分析与椭圆型微分方程, 先后主持国家自然科学基金3项, 先后在ARMA,JDE, Calculus of Variations and Partial Differential Equations, JGA, Pacific J.Math, Annali di Matematica Pura ed Applicata等刊物上发表论文20余篇。
报告二题目:Qualitative analysis on the critical points of Robin function and Kirchhoff-Routh function
报告人: 罗鹏
报告简介:
In this talk, we give some results on the number, location and non-degeneracy of critical points of the Robin function in a domain with a small disk. We will show that the location of center of the disk plays a crucial role on the existence and multipliciaty of the critical points. The proof of our result is a consequence of delicate estimates on the Green function near to the boundary of disk. Some application to compute the exact number of solutions of related well-studied nonlinear elliptic problems will be showed. This is a joint work with Francesca Gladiali, Massimo Grossi and Shusen Yan.
报告人简介:
罗鹏,副教授,博士生导师。2018年入选湖北省高层次人才“楚天学子”计划。2009年于华中师范大学获学士学位,2014年于武汉大学获博士学位,2014年7月至2016年6月在中国科学院从事博士后研究。 2016年7月入职华中师范大学。2019年9月-2020年8月在意大利Sapienza University of Rome从事科学研究。主要研究方向为偏微分方程及其应用,主要兴趣是发展并利用非线性泛函分析、椭圆方程理论等研究椭圆型方程解的唯一性与对称性等解的相关性质。近年来,在Brezis-Nirenberg方程、Lane-Emden方程、以及无穷阶退化椭圆方程等问题解的性质方面取得了一系列进展,主要成果发表于TAMS、JMPA、IUMJ、Annali SNS-Pisa、CVPDE、JDE等国际学术期刊。主持或完成国家自然科学基金青年项目、面上项目,作为核心成员参与国家自然科学基金重点项目。