教授,博士生导师
通讯地址:bat365官方网站,邮编:100048
电子信箱:liuyn@th.btbu.edu.cn
办公室:阜成路西区综合楼1102,良乡校区数统楼301
电话:010-68985255
个人简历
2002年7月毕业于内蒙古大学数理基地班,获学士学位;
2004年7月毕业于南京理工大学应用数学专业,获硕士学位;
2007年7月毕业于清华大学应用数学专业,获博士学位;
2007年7月至2009年6月,北京大学博士后;
2009年6月至今,公司数学系任教;
访问经历:
2009年6月访问新加坡国立大学;
2010年7月至9月访问意大利国际理论物理中心。
2012年12月至2013年10月, 美国圣母大学,博士后。
研究领域:主要研究几何中的偏微分方程和曲率流,尤其是非线性椭圆方程解的存在性、唯一性和正则性,曲率流的长时间存在性、收敛性和奇点分析。
主讲课程:数学分析(全英),线性代数,概率论与数理统计(中、英文)。
承担项目:
1. 凸几何中蒙日-安培型方程的研究,国家自然科学基金面上项目,2021.1-2024.12,主持;
2. 对偶Orlicz-Minkowski 问题及相关曲率流,北京市自然科学基金面上项目,2021.1-2023.12,主持;
3. Monge-Ampere型方程及相关研究,国家自然科学基金专项项目,2021.1-2025.12,参与;
4. 几何中一类退化蒙日安培类型方程的研究,北京市自然科学基金面上项目,2017.1-2019.12,主持;
5. 有关Willmore若干问题的研究,国家自然科学基金青年基金,2013.1-2015.12,主持;
6. 有关Willmore奇点问题的研究,北京市自然科学基金面上项目,2013.1-2015.12,主持;
7. 仿射平均曲率流的研究与应用,北京市属高校高层次人才引进与培养:青年拔尖人才资助,2013.1-2015.12,主持;
8. 一类四阶曲率流奇点发生时间与曲率渐近性质的研究,北京市组织部优秀人才项目,2012.9-2014.12,主持;
9. 有关Willmore流长时间存在性与收敛性问题的研究,国家自然科学基金天元基金,2011.1-2011.12, 主持;
10. 有关四阶曲率流的研究,中国博士后科学基金,2008.7-2009.6,主持。
发表的主要论文:
[1] Liu Y. N. and Lu J., A flow method for the dual Orlicz-Minkowski problem, Trans. Amer. Math. Soc., 373 (2020): 5833--5853.
[2] Liu Y. N. and Lu J., A generalized Gauss curvature flow related to the Orlicz-Minkowski problem. arXiv:2005.02376.
[3] Chen L., Liu Y. N., Lu, J. and Xiang, N., Existence of smooth even solutions to the dual Orlicz-Minkowski problem. J. Geom. Anal. 32 (2022), no. 2, Paper No. 40, 25 pp. 35J96 .
[4] Li B. Y., Ju H. J. and Liu Y. N., A flow method for a generalization of Lp Christofell-Minkowski problem. Commun. Pure Appl. Anal., 21 (2022), no. 3: 785–796.
[5] Ju H. J., Li B. Y. and Liu Y. N., Deforming a convex hypersurface by anisotropic curvature flows, Advanced Nonlinear Studies., 21 (2021), no. 1: 155–166.
[6] Fang F. and Liu Y. N., Global existence and finite time blow-up for the heat flow of H-system with constant mean curvature, Mathematical Methods in the Applied Sciences, 2022.
[7] Li Y. and Liu Y. N., Optimal global regularity for minimal graphs over convex domains in hyperbolic space, Frontiers of Mathematics in China, online 2021.
[8] Liu Y. N., Inscribed radius estimates for inverse curvature flow in sphere and hyperbolic space, Nonlinear Analysis, 2017, 155:198-206.
[9] Liu Y. N. and Ju H. J., Non-collapsing for a fully nonlinear inverse curvature flow, Commun. Pure App. Anal., 2017, 16(3): 945-952.
[10] Liu Y. N. and Ju H. J., Evolution of convex surfaces by a fully nonlinear flow, Nonlinear Analysis, 2016, 130: 47-58.
[11] Ju H. J. and Liu Y. N., Dirichlet problem for anisotropic prescribed mean curvature equation on unbounded domains, J. Math. Anal. Appl., 2016(439): 709-724.
[12] Han Q. and Liu Y. N., Degenerate hyperbolic equations with low degree degeneracy, Proc. Amer. Mathematical Society, 2015, 143(2): 567-580
[13] Liu Y. N., Inverse mean curvature flow with forced term, J. Math. Anal. Appl., 2014(410): 918-931.
[14] Liu Y. N. and Cao L. F., Lifespan theorem and Gap lemma for the globally constrained Willmore flow, Commun. Pure Appl. Anal., 2014, 13(2):715-728.
[15] Liu Y. N., Gradient flow of the Helfrich functional, Chin. Ann. Math., 2012, 33(6): 931-940.
[16] Liu Y. N., Evolution of hypersurfaces by powers of mean curvature, Frontiers of Mathematics in China, 2012, 7(4): 717-724.
[17] Jian H. Y. and Liu Y. N., Ginzburg-Landau vortex and mean curvature flow with external force field. Acta. Math. Sin., Engl. Ser., 2006, 22(6): 1831-1842.
[18] Liu Y. N. and Jian H. Y., Evolution of hypersurfaces by mean curvature minus external force field. Science in China (Ser A)., 2007, 50(2): 231-239.
[19] Jian H. Y. and Liu Y. N., Long-time existence of mean curvature flow with external force fields. Pacific J. Math., 2008, 234(2), 311-324.
[20] Liu Y. N. and Jian H. Y., Evolution of spacelike hypersurfaces by mean curvature minus external force field in Minkowski space. Advanced Nonlinear Studies, 2009, 9:513-522.
[21] Liu Y. N. and Jian H. Y., A curve flow evolved by a fourth order parabolic equation. Science in China, Ser A, 2009, 52(9): 2177-2184.
[22] Liu Y. N., Evolution of noncompact hypersurfaces by mean curvature minus a kind of external force field, Front. Math. China, 2010, 5(2): 311-317.
[23] Jian H. Y., Ju H. J. and Liu Y. N., and Sun W., Symmetry of translating solutions to mean curvature flow,Acta Mathematica Scientia,2010, 30B(6): 2006–2016.